
Determining Mission Effects of Equipment Failures

Paul Morris1 and Minh Do*2 and Robert McCann3 and Lilly Spirkovska4 and Mark Schwabacher5 and Jeremy Frank6

NASA Ames Research Center, Moffett Field, CA 94035

*Stinger Ghaffarian Technologies, Inc., NASA Ames Research Center, Moffett Field, CA 94035

NASA plans call for long duration deep space missions with human crews. Because of light-
time delay and other considerations, increased autonomy is needed. Crews on next-generation
missions will likely be small, perhaps with as few as four members. A small crew is not likely
to possess the full range of expertise needed to deal with unexpected failures and anomalies.
Applied artificial intelligence technologies have developed decision support tools with the
potential to fill the gap, but these tools need to be integrated to provide a smooth operational
capability. In this paper we describe such an integration involving anomaly detection,
diagnosis, system effect propagation, and plan repair.

Nomenclature
ISHM = Integrated Systems Health Management
P&S = Planning and Scheduling
AS = Autonomous Systems
ACAWS = Advanced Caution and Warning System
C&W = Caution and Warning
IMS = Inductive Monitoring System
EUROPA = Extendable Uniform Remote Operations Planning Architecture
SPIFe = Scheduling and Planning Interface for Exploration
TEAMS RDS = Testability, Engineering, and Maintenance System Remote Diagnostic Server
FMECA = Failure Modes, Effects, and Criticality Analysis
DSH = Deep Space Habitat
MOT = Mission Operations Test
STN = Simple Temporal Network
AD = Activity Dictionary
MAPGEN = Mixed Initiative Activity Plan Generation
LADEE = Lunar Atmospheric Dust Environment Explorer
NDDL = New Domain Description Language

I. Introduction
uture NASA plans call for long duration deep space missions with human crews. Because of light-time delay
and other considerations, it will not be feasible to micro-manage the mission from the ground to the extent that

was done for the Apollo missions to the Moon; thus, increased autonomy is needed. Managing missions with less
real-time ground assistance poses a number of challenges, however.

F
In current practice, detection, isolation, and recovery from spacecraft system faults requires large teams of

specialized ground-based controllers that must mentally integrate data gathered via disparate operations products.
Failure management is even more difficult, and more reliant on ground-based expertise, for multiple failures or
unexpected anomalies. Crews on next-generation missions will likely be small, perhaps with as few as four

1 Code TI, M/S 269-1, NASA Ames Research Center.
2 Stinger Ghaffarian Technologies Inc., NASA Ames Research Center.
3 Code TH, M/S 262-4, NASA Ames Research Center.
4 Code TI, M/S 269-3, NASA Ames Research Center.
5 Now at Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA.
6 Code TI, M/S 269-3, NASA Ames Research Center.

American Institute of Aeronautics and Astronautics
1

https://ntrs.nasa.gov/search.jsp?R=20190001655 2020-05-09T23:13:59+00:00Z

members. Even with extensive training, a small crew is not likely to possess the full range of expertise needed to
deal with unexpected failures and anomalies.

Fortunately, applied artificial intelligence technologies associated with the emerging fields of Integrated Systems
Health Management (ISHM) and Planning and Scheduling (P&S) have matured to the point where they can begin to
provide advanced decision support products for crew-members and flight controllers alike. NASA’s Autonomous
Systems (AS) project is exploring the use of advanced automation tools to support such tasks as planning, plan
execution, anomaly detection, diagnosis, and failure recovery. Several such tools have been developed in past years.
In conjunction with building generic tools, much of the work involves developing system models that capture
system structure, interconnections, tests, procedures, and failures. System models can support a wide variety of tools
and fault management capabilities.

A recent focus of our work has been on integrating these tools so that they work together to provide a smooth
operational capability. In the past year, we have addressed the integration of three key tools, an Advanced Caution
and Warning System (ACAWS), the Scheduling and Planning Interface for Exploration (SPIFe), and the Extendable
Uniform Remote Operations Planning Architecture (EUROPA). The objective of our tool integration effort is to
assist controllers and crew with determining effects of system failures on mission objectives and re-planning the
mission activities timeline to recover from failures and accomplish as many preplanned mission activities as
possible. Thus, the integrated system provides a capability for detecting and diagnosing faults, analyzing the
disabling effects of the faults on downstream components, determining the impact of those disabling effects on the
existing crew activity schedule, and revising the schedule to cope with the faults.

To achieve this capability, we have developed methods to communicate failures between ISHM and the planning
tools, compactly specify resources required by timeline activities, customize interfaces to facilitate real-time
interaction, and utilize and extend the ACAWS, SPIFe, and EUROPA tools.

In the following sections, we describe the component tools, the roles they play in the combined system, the
information flow between the tools, and the integration “glue” used to link them together. We also discuss utility
tools used to facilitate model building for the P&S components.

II. Decision Support Tools for Spacecraft Mission Management
In this section we describe the ACAWS (anomaly detection and diagnosis), SPIFe (plan visualization and

editing), and EUROPA (plan generation) tools that are the components of the integrated system.

A. ACAWS
The Advanced Caution and Warning System (ACAWS) supports spacecraft failure management for human

missions to distant destinations and human missions in low Earth orbit with smaller, less experienced ground
controller teams. Previous manned spacecraft have relied on a caution and warning (C&W) system primarily
implemented as threshold-based alarms issued by individual components and subsystems. A single fault can produce
a multitude of C&Ws as each component affected by that fault issues its own alarm(s). Flight controllers train for
years to develop necessary expertise for a specific discipline (subsystem) and work as a multi-discipline team to
make sense of these numerous, nearly simultaneous C&W messages to deduce the instigating “root cause” fault(s),
determine the effects of the fault(s) on the spacecraft and mission, and adapt workaround procedures to safely and
effectively proceed with the mission. As humans venture farther from Earth, a paradigm change is required from
current operations because the crew will not be able to depend on support from ground as readily as they do now
when communication speed—limited by the speed of light—is noticeably slower (up to 22 min one-way to/from
Mars) or when knowledge becomes more limited within the on-console ground teams as budget cuts and retirements
force smaller, less experienced teams.

ACAWS provides an integrated toolset that includes anomaly and fault detection, automated diagnostic analysis
and root cause identification, troubleshooting assistance when instrumentation alone is insufficient to provide an
unambiguous diagnosis, effects assessment, and a dynamic and interactive graphical representation of the spacecraft
systems and their health.

For anomaly detection, ACAWS utilizes the Inductive Monitoring System (IMS) developed at NASA Ames
Research Center (ARC) (Iverson et al. 2012).1 IMS uses clustering to learn nominal system behavior from archived
or simulated system data, automatically builds a “model” of nominal operations, and stores it in a knowledge base.
The IMS real-time monitor and display informs users of degree of deviation from nominal performance. Analysis
can detect conditions that may indicate an incipient failure or required system maintenance.

For automated diagnosis and troubleshooting, ACAWS utilizes the Qualtech Systems Inc. TEAMS RDS
(Testability Engineering and Maintenance System Remote Diagnostic Server) product (http://teamsqi.com). TEAMS

American Institute of Aeronautics and Astronautics
2

is a model-based system enabling a general diagnostic reasoner to be applied to any physical system by plugging in
a failure propagation model of the system and real-time observations about the system’s behavior. This model
captures considerable system knowledge gathered from FMECA reports, fault trees, schematics, instrumentation
lists, operational use cases, other technical documentation, and system engineering expertise. For real-time use, the
model is reduced to the relationship between various system failure modes and system instrumentation.
Instrumentation readings are received, processed, and turned into pass/fail results for specific tests. Abductive
reasoning is then used to determine the set of failure modes that explain the test result signature.

In addition to providing knowledge necessary for diagnosis, the diagnostic model captures knowledge necessary
for system effects reasoning. However, unless the model is developed with system effects in mind, diagnostic
models generally encode only 80%-90% of effects of a failure. For the exceptional 10%-20% of effects that cannot
be determined from a diagnostic model alone, targeted knowledge can be added to the model in the form of Boolean
expressions that indicate whether a component is impacted by a failure or not, and whether an impact should
propagate further in the model. The ACAWS System Effects reasoner (Columbano et al., 2013),2 developed at
NASA Ames, exploits these augmented models to determine the full set of effects of a failure on the spacecraft (or
generally, on the system of interest).

The final module of ACAWS is the operator interface. The operator is provided the results of each of the
reasoners – anomaly detection, diagnosis, and system effects – in multiple formats designed with the operators’
tasks in mind. Text log based formats provide all the details about either diagnosis or effects in one place that can be
copied from ACAWS into other documents for communication purposes (say, between crew and ground, or in an
anomaly resolution report). Component based formats, together with the component hierarchy extracted from the
diagnostic model, provide annunciator panel type displays that summarize the spacecraft’s health. Components can
also be arranged to reflect the architecture of subsystems, providing a visual indication of the flow of a failure and
its effects. Symbols with supplementary color-coding added to the components provide visual indication of failure;
possible failure (that is, a component that is a part of an ambiguous diagnosis); or affected by a failure or possible
failure, either total loss of function or loss of redundancy. In addition to displaying real-time information, the
ACAWS operator interface provides task-facilitating query options. For example, the operator can suppose
component(s) failed or may have failed and query the system for the effects of that scenario – very useful for
operator training or to explore hypothetical “what-if” situations while monitoring a flight. Also, the operator can ask
for common ancestors of selected components, useful for determining next-worst failure – an analysis often at the
forefront of a controller’s failure management process, or can ask for the path from the failure(s) to a selected
component to analyze the propagation from, say, an electrical power system failure to a coolant pump. Figure 1
shows one view of an operator-customizable arrangement of information panes in a hybrid real-time plus analysis
mode (McCann et al., 2013).3

Figure 1: ACAWS Information Panes.

American Institute of Aeronautics and Astronautics
3

ACAWS has been evaluated and matured through a variety of Earth-analog mission operations tests, such as the
Habitat Demonstration Unit Desert Research and Technology Studies (D-RaTS: www.nasa.gov/exploration/analogs/
desertrats), Deep Space Habitat (DSH) Autonomous Mission Operations evaluation (Frank et al., 2013),4 and the
Deep Space Habitat Mission Operations Test. Most recently, it is being applied to a ground-based capability
demonstration during Exploration Flight Test 1 (EFT-1) – an unmanned test flight of the next-generation manned
spacecraft – Orion – being designed for missions to an asteroid and eventually to Mars.

B. SPIFe
SPIFe (Marquez et al., 2010)5 is used for plan creation, validation and editing. It was developed as a joint

project at NASA Ames and NASA’s Jet Propulsion Laboratory (JPL). SPIFe was built using the Eclipse
development environment, which facilitates customization using separate plugins.

The tool includes a sophisticated plan database and graphical user interface to detect flaws in the plan that can be
interactively fixed by the user. These include situations where an activity violates user-specified temporal
constraints, over-subscribes resources, or fails to meet state requirements. The tool specifies the type, time of
occurrence, and culprit activities for each flaw. The user then has the option of adding, deleting, or moving
activities, or modifying activity parameters, in order to resolve each flaw. Flaws may also be waived by the user.

The static properties of activities are specified by means of an Activity Dictionary (AD), which is a type of model
of the application domain. In the AD one can define state variables, as well as resource types and resource limits,
and then specify the state requirements and effects of activities, and their impact on resources. The AD is
procedurally oriented, allowing the use of javascript to calculate resource usage and other values, based on activity
parameters and other variables.

SPIFe is designed for interactive use with an extensive graphical user interface (GUI). The GUI provides several
panes, or views of the plan, for different types of user interaction. The Timeline view presents a Gannt-like picture
of the activity schedule with the activities arranged chronologically from left to right, and organized into separate
rows according to user-selected options such as by category or parameter value. It can also be toggled to show
instead a tabular listing of the activities. The Plan Advisor view shows detailed information about the flaws, which
are also flagged in the Timeline view. An Activity Dictionary view can be used to drag new activities into the plan,
while a Details view focuses on individual activities and their parameters. The different views are fully integrated,
and selections and changes in each are reflected in the others. There is also a Plan Navigator pane for selecting and
opening previously saved or imported plans. Several plans may be open at the same time, using different tabs, but
only the selected tab is visible in the views.

The SPIFe tool was used for ground planning on the Mars Phoenix mission and is in current use for the Mars
Science Laboratory Curiosity rover as well as various applications for the International Space Station. It has also
seen use in several analog operations tests and studies.

C. EUROPA
Developed at NASA Ames, EUROPA (Frank and Jonsson, 2003),6 supports automatic planning with temporal,

state, and numeric constraints. In contrast to the procedural orientation of SPIFe, it is based on a declarative
language similar to those used in the automated planning community, and utilizes a least commitment planner. An
early version of EUROPA was incorporated into the MAPGEN tool used in tactical planning for the Opportunity
rover in the continuing Mars Exploration Rover mission. It also traces its heritage to the automatic planning
component of the Remote Agent Experiment, where an onboard artificial intelligence (AI) system controlled the
Deep Space I robotic spacecraft for several days (Muscettola et al., 1998).7

The EUROPA database provides a plan consisting of a set of activities that are interrelated via a rich set of
temporal, state, and resource properties. In particular, it includes a Simple Temporal Network (STN) (Dechter,
Meiri, and Pearl, 1991)8 to support planning and ensure consistency of the temporal constraints. The STN
determines a plan that has temporal flexibility; that is, it corresponds to a set of related schedules rather than a single
schedule. Instead of having a single time, the events in the plan have a time interval with lower and upper bounds on
when they can occur. This provides scope for adjusting to temporal deviations during execution.

The current tool has been integrated with SPIFe using a specialized EUROPA plugin, called DynamicEuropa.
This combination provides for a Mixed-Initiative Planning framework (Bresina and Morris, 2007),9 in which a
human operator collaborates with the Europa suite of automated tools to create a plan. In the integration, SPIFe
presents to the user a single nominal schedule, which is backed by a flexible plan in EUROPA. When adjusting the
plan to satisfy constraints, the flexible plan is restricted to exclude constraint violations. EUROPA then computes a
new nominal schedule that satisfies the constraints while minimizing the changes from the previous one, and
communicates it to SPIFe. This approach serves to maintain general plan stability and allows the human operator to

American Institute of Aeronautics and Astronautics
4

express simple timing preferences. The nominal schedule can also provide heuristic guidance to an automated
planner (Morris et al., 2011)10 through the ordering of events.

This general approach was used for NASA’s recent Lunar Atmospheric Dust Environment Explorer (LADEE)
mission. However, the automatic planning capability of DynamicEuropa in LADEE and prior SPIFe integrations is
limited to removing mutual exclusion flaws. For the AS project we have implemented a more general automatic
solving capability that reschedules activities based on state requirements and effects. For example, the LADEE
planner can automatically move activities away from forbidden regions but it does not automatically move them into
required regions. The new solver can do so, and can also move activities that supply missing effects from an
activity reserve area to where they are needed in the plan.

III. Integration
Figure 2 shows the overall architecture and information flow of the integrated system. The modules

communicate with each other through publish-and-subscribe middleware. The System Health module, which
includes TEAMS and ACAWS, provides a diagnosis of the failure and determines its downstream consequences.
The System Effects are those components that are disabled (no longer functioning as designed) as a result of the
components that have failed. (For example, a lamp may be disabled because the module that supplies power to the
lamp is broken.) System Effects are computed using a propagation approach that traverses the causal chain of
physical functionality between the components. The ACAWS software reuses the diagnostic model built for use
with TEAMS but augments it with effect propagation logic where necessary.

The Planning module, composed of SPIFe and EUROPA, determines the Activity Effects on the mission timeline,
that is, activities that can no longer occur because they depend upon resources that have either been declared failed
or non-operational by ACAWS. For example, suppose an astronaut was scheduled to perform a visual examination
of a mineral sample using light from the lamp to which we referred earlier. Obviously, the examination could no
longer be performed (the activity could not be carried out) if the lamp was unable to provide illumination (as would
occur if a failure in the electrical power system cut off power to the lamp). In that case, the plan needs to be
modified to either fix the failure, thereby restoring power to the lamp and allowing the scheduled activity (sample
inspection) to proceed, and/or to meet as many mission objectives as possible if the failed component could not be
fixed. Replanning of this sort takes advantage of the mixed-initiative capability of the SPIFe/EUROPA
combination. For example, the operator can make manual changes, or can call on the automatic planning capability

American Institute of Aeronautics and Astronautics
5

Figure 2: System Architecture.

in EUROPA to assist. In our experiments, EUROPA automatically added repair activities to fix broken electrical
power system components and adjusted the crew schedules accordingly.

In previous applications, such as daily tactical planning for Mars robotic missions, SPIFe has been used in a
standalone mode. For our purposes, a more interactive mode was required, in which SPIFe “listens” to the failure
diagnoses coming from ACAWS and automatically updates the plan in a way that shows the effects on the activities.
To achieve this, we modified a feature, called the InCon, of the standalone tool. The InCon is used to specify initial
conditions, which may include initial resource levels and initial states, such as the broken or disabled states of the
components. Normally, the InCon is loaded by manually importing a file. In our case, we modified the code to
periodically look for a new version of the file and use it to overwrite the existing initial conditions. We also
implemented a small process that subscribes to the failure reports and writes a corresponding InCon file.

The SPIFe model involves an internal Activity Dictionary that has a complicated format. While it is possible to
load an xml-based text version of the AD, it is a time-consuming task to author such a file for a significant
application, especially with the frequent changes that occur during development. To facilitate this work, we
developed a general high-level language for specifying the model, and wrote an automatic translator for converting
it to the AD format. For this particular application, we also accepted as input a spreadsheet method of specifying the
activity types and their properties. This provided a more comfortable interface for our domain expert. In previous
integrations, a separate translator is needed to automatically extract the NDDL model needed by Europa from the
SPIFe AD. For our application, this required significant modification to support the capability to introduce new
state-changing activities and move them to where they are needed in the plan.

The Activity Effects correspond to flaws in the SPIFe Timeline and Plan Advisor views. In the Timeline view,
these show up as red tick marks at the top and the culprit activities are depicted with red borders (see Fig. 3).
Additional information is available by mouse-over. The Plan Advisor gives even more details and also provides a
fixViolations button, which calls Europa to do automatic replanning. In our application, replanning placed repair
activities at appropriate points in the plan, and rescheduled other activities around the repair so that crew-members
were not double-booked.

When the call to fixViolations returns, it presents a set of recommendations in the form of a table that lists
activities with their old and new start times. The user may accept or reject any or all of these. The accepted changes
are installed in the plan. Conveniently, SPIFe provides an undo/redo feature for all modifications to the plan,
including fixViolations, which allows toggling between the old and new plans.

IV. Tests
We constructed nine scenarios to test the integrated system. This involved selected activities from the Deep

Space Habitat Mission Operations Test timeline for four crew-members, the Commander (CDR), and three Flight
Engineers (FE1, FE2, FE3). The activities were associated (Fig. 4) with pieces of equipment (resources) that
depended on components of the avionics power system, so failure of the components impacted crew activities. All
but one of the scenarios involved an individual fault which varied according to its level in the electrical power
system hierarchy (and hence, the ACAWS diagnostic hierarchy). Thus, a high-level fault would typically have a
large impact on the activity schedule, affecting several individual activities, while a low-level fault might have little
or no impact. One scenario involved two independent faults.

The faults were injected into ACAWS using a “What-If” testing capability. The resulting system effects were
transmitted to SPIFe where the component failures were interpreted as unsatisfied state requirements. In each case,
EUROPA was then called to fix the violations. One fault scenario did not impact any activities. For the eight other
scenarios, solutions were found without backtracking in all cases, with no domain-specific or complex heuristics.
The nominal (original) plan had 36 activities. A few activities required two crew members. Automatic solving took
about a second on a Mac laptop, which allowed for a comfortable interaction with ACAWS.

American Institute of Aeronautics and Astronautics
6

Figure 3: Plan with Flaws.

V. Closing Remarks
Apart from extensive changes that were needed to support enhanced flaw removal in the fixViolations

functionality, the integration mainly involved modification of the interfaces. We also changed some look-and-feel
aspects of the GUI to better suit the application.

In the scenarios considered, the plans to be repaired were assumed to happen after the time that the resources
became broken and disabled. In a more continuous or ongoing planning/execution scenario, an unfolding plan
would need to be truncated to future activities before the repair process is applied. Thus, activities in the past would
be discarded and activities that are partially executed would be shortened. In that case, the resource state
modifications might need to be applied to the measured or projected conditions at the current time rather than the
original initial conditions. The SPIFe tool does include a limited capability to project future conditions, but that
might require extensions for such scenarios.

Search control was relatively straightforward for the type of planning needed for the tests. In the future, we
would like to address more challenging planning tasks such as synthesizing novel procedures from basic “atomic”
actions. Also needed are mechanisms to automatically generate planner models from more neutral knowledge
sources that could be shared by many tools.

Acknowledgments
The authors wish to acknowledge the contributions of the ACAWS and SPIFe/EUROPA development teams,

including Gordon Aaseng, Vijay Baskaran, Adam Campbell, Silvano Colombano, Mike Dalal, Chuck Fry, David
Iverson, John Ossenfort, Brandon Oubre, Irene Smith, Arash Aghevli, Javier Barreiro, John Bresina, Steve
Hillenius, Bob Kanefsky, and Jessica Marquez. This research was supported by NASA's Space Technology Mission
Directorate through the Game Changing Development Program's Autonomous Systems Project.

References

1Iverson, D.L., Martin, R., Schwabacher, M., Spirkovska, L., Taylor, W., Mackey, R., Castle, J.P., and Baskaran, V., “General
Purpose Data-Driven System Monitoring for Space Operations.” Journal of Aerospace Computing, Information, and
Communication 9:2, 2012.

2Colombano, S., Spirkovska, L., Aaseng, G., Schwabacher, M., Baskaran, V., Ossenfort, J., and Smith, I.. “A System for Fault
Management, Including Fault Consequence.” 43rd International Conference on Environmental Systems (ICES). Reston, Virginia:
American Institute of Aeronautics and Astronautics, 2013.

American Institute of Aeronautics and Astronautics
7

Figure 4: Association of Activities to Resources.

3Frank J., Aeseng G., Dalal K.M., Fry C., Lee C., McCann R., Narasimhan S., Spirkovska L., Swanson K., Wang L., Molin A.,
and Garner L, “Integrating Planning, Execution, and Diagnosis to Enable Autonomous Mission Operations,” Scheduling and
Planning Applications Workshop (SPARK), Rome, Italy, June 10-14. 2013.

4McCann R.S., Spirkovska L., and Smith I.. “Putting ISHM Capabilities to Work: Development of an Advanced Caution and
Warning System for Crewed Spacecraft,” AIAA Modeling and Simulation Technologies (MCT) Conference, Boston, MA, August
19-22, 2013.

5Marquez, J. J., Ludowise, M., McCurdy, M., and Li, J.. “Evolving from Planning and Scheduling to Real-Time Operations
Support: Design Challenges.” 40th International Conference on Environmental Systems. Barcelona, Spain, 2010.

6Frank, J. and Jonsson, A.. “Constraint-Based Interval and Attribute Planning.” Journal of Constraints 8:4 Special Issue on
Constraints and Planning, 2003.

7Muscettola, Nyak, Pell, and Williams. “Remote Agent: to Boldly Go Where No AI System Has Gone Before.” Artificial
Intelligence 103 (1-2), pp 5-47, Aug. 1998.

8Dechter, R., Meiri, I., and Pearl, J.. “Temporal Constraint Networks.” Artificial Intelligence 49:1-3, 1991.
9Bresina, J., and Morris, P.. “Mixed-Initiative Planning in Space Mission Operations.” AI Magazine 20:2, 2007.
10Morris P., Bresina J., Barreiro J., Iatauro, M., and Smith T.. “State-Based Scheduling via Active Resource Solving.” 4th IEEE

International Conference on Space Mission Challenges for Information Systems (SMC-IT), 2011.

American Institute of Aeronautics and Astronautics
8

